TECHNICAL ASSIGNMENT 2

STRUCTURAL STUDY OF ALTERNATIVE FLOOR SYSTEMS

Duquesne University Multipurpose/ Athletic Facility

Michael Szott Structural Option Advisor: M. Kevin Parfitt October 25, 2006 Technical Report 2

Executive Summary

The intention of this report is to explore alternative floor framing systems for the Duquesne University Multipurpose Athletic Facility. Four alternative systems were chosen and evaluated.

- Modified composite steel framing
- Concrete pan joist construction
- Composite open web steel joists
- One way concrete slab

To begin, a single representative bay was chosen from the existing framing system layout. The geometry of this bay was used in the design of all four alternatives. For ease of design, several design aids and engineering software programs were consulted during the compilation of the enclosed calculations. For the existing steel framing, a RAM model was created, and used to model the modified steel construction. For the concrete alternatives, the CRSI Handbook was consulted. The gravity loading for this exercise is the same as was used in Technical Report 1.

Here is an overview of the alternative systems designed in this report.

Floor System	Slab Used	Beams	Girders
Modified Composite Steel	4.5" NWC slab on 2" composite metal deck	W12x14 (8)	W24x62 (24)
Concrete Pan Joists	3" NWC slab	30" forms, 6"x20" ribs	17x26
Composite Steel Joists	2.5" NWC slab on 2" composite metal deck	12VC	existing
One Way Concrete Slab	6" NWC slab	16x22	18x22

A comparison chart summarizing all of the systems is listed on page 9 of this report, detailing the positive and negative attributes of each evaluated system. The chart outlines constructability, cost, effects on lateral and foundation systems, and floor depth. After the evaluation of each floor system, I have concluded that the only other feasible floor system that should be evaluated further is the composite steel joist construction. Each other system negatively impacts the building in ways that warrant no further inspection.

Table of Contents

Introduction	. 1
Existing Plan	1
Gravity Loads	2
Alternative Systems	2
Design References/Software	3
Existing Floor System	4
Alternative Floor Systems	.5
Modified Composite System	5
Concrete Pan Joists	6
Composite Steel Joists	7
One Way Concrete Slab	8
Comparison	9
Appendices	.10
Modified Composite	10
Concrete Pan Joists	11
Composite Steel Joists	13
One Way Concrete Slab	17

Introduction

Duquesne University's Multipurpose Athletic Facility is currently under construction on Pittsburgh's Forbes Avenue. The building is supported by a steel superstructure, including a composite steel floor system. Each of the first three floors are framed in rectangular bays, ranging in size from 20'x20' to 21'x34'. The upper athletic and ballroom floors are also composite steel, but are framed with longer spans (79'6") due to the open plan of the gymnasiums below.

Currently, the typical floor depth does not exceed 30.5" (W24, 4.5" concrete, 2" metal deck). While a W24 is the largest member within the interior floor bays, most members fall in the range of W12's through W18's. When looking at the gymnasium and ballroom levels, the floor depth is at most 42.5" (W36, 4.5" concrete, 2" metal deck). Since the upper gymnasium floors differ from the typical floor bays, I will concentrate the comparisons on a typical floor bay as shown below.

Highlighted Section shown with description of existing floor system

Gravity Loading

Live Loads (ASCE 7-02, Table 4.1)

Lobbies and Public Spaces	100 psf
Corridors (above first floor)	80 psf
Mechanical	75 PSF (assumed)
Athletic Floors	100 psf
Stairs and Exits	40 psf
Offices	50 psf

Dead Loads

Partition Allowance	20 psf
Reinforced Concrete Slab	150 pcf
MEP	5 psf
Metal Decking	2-3 PSF (deck catalog)
Joist/Beam Weight	Specific to each member

Alternative Systems

In this report, I will be evaluating four alternative floor systems against the existing composite construction, including:

- **Modifying the existing bays** will be evaluated in the hopes that the smaller beam spans will yield a lighter overall floor system.
- A one way concrete slab with beams and girders will be assessed to determine if a concrete system will be structurally and economically comparable to steel.
- **Concrete pan joists** will be checked to compare another fully concrete system's performance against the existing steel.
- **Composite Steel Joists** is another option for the typical bays and the long span areas of the floor framing.

Design References/Software

This report will be completed with the use of several structural design aides and other resources. They include:

- AISC Manual of Steel Construction, 13th edition
- Vulcraft Steel Roof and Floor Deck catalog
- Vulcraft Composite Steel Joist and Joist Girder catalog
- CRSI Handbook
- R.S. Means 2006, Assemblies Cost Data

Software:

- RAM Structural System
- Enercalc Structural Engineering Library

Existing Floor System

The existing floor framing is composed of 20'x20' to 21'x31'-34' bays, topped with 4.5" of normal weight concrete on 2" composite metal decking. In this system, beams span in the long direction and the girders span in the short direction. The girders short span allows the designer to carry the large beam forces with relatively small members, reducing the overall weight and depth of the floor system.

Comparison of the existing framing to the alternative choices can be found in the appendices of this report.

Advantages

Weight: The overall weight for this typical floor bay is approximately 54,500#. The use of steel framing greatly reduces the weight as compared to concrete. This lighter structure will impact the foundation design and, if seismic forces should control over wind forces, the lateral system as well.

Floor Depth: In this particular bay, the floor depth is measured at 24.2". This relatively small floor depth is favorable for the coordination of MEP equipment, architectural aspects of the structure, and maintaining required floor to ceiling heights.

Constructability: The use of steel framing allows the buildings skeleton to be erected quickly and efficiently. Once the decking is in place a working platform is immediately available for use by all involved.

Disadvantages

Cost: See comparison chart

Modified Composite System

The modified composite system is modeled in the same typical 21'x31'-4" bay as shown in the existing system. The slab remains as specified, 4.5" of concrete on a 2" composite deck. The beams are now spaced in equal intervals (6.25') and span in the short, 21' direction. In this new system, the beams are a considerably smaller depth, but the girders have become deeper, and almost two times heavier.

Comparison of the existing framing to the alternative choices can be found in the appendices of this report.

Advantages

Weight: The overall weight for this typical floor bay virtually the same as the existing system, weighing in at 54,400#. The amount of shear studs is less, but only by 8 studs.

Disadvantages

Floor Depth: Although the beam depth has decreased by 6 inches, the girder depth has increased from a W18 to a W24 sized member. The new floor depth is 30.2", decreasing possible floor to ceiling height and crowding/restricting MEP space availability.

Labor: The increased number of beams means there are more connections to make. The labor costs associated with increased man hours may drive up costs.

Cost: See comparison chart.

Concrete Pan Joists

This system uses the same 21'x31'4" bay as the existing system. The joists are able to span the existing dimension and take up less floor space. The slab is now 23" thick as compared to the 30.2" modified bay and the 24.2" existing bay. The system is composed of 30" forms and 6"x20" ribs spaced at 36" c.c. The girders, however, are deeper that the slab, potentially causing room height problems.

Comparison of the existing framing to the alternative choices can be found in the appendices of this report.

Advantages

Floor Depth: The pan joists are 1.2" more shallow than the existing system. The girders are 3 inches deeper, but should not effect the placement of MEP equipment.

Constructability: Reusable, pre-fabricated formwork is not only an advantage in cost of construction but a savings in storage space on site.

Disadvantages

Weight: The addition of a concrete floor system adds a significant amount of weight to the structure. This added weight will have a great impact on the size of the foundation system.

Lateral System: Because of the added weight, wind forces may no longer control the design of the lateral force resisting system. Consequently, the system may need to be more stringently designed, possibly as shear walls, or another concrete system.

Composite Steel Joists

The composite steel joists are laid out at 10' intervals and have a reduced slab for the typical bay: 2.5" NWC slab on 2" composite deck. The open web joist span 31'4", sized at 12VC1800/850/300 joists with (40) ³/₄" shear studs.

Comparison of the existing framing to the alternative choices can be found in the appendices of this report.

Advantages

Weight: These composite joists weigh 37 pounds per foot, very comparable to the existing W-shape weights. The big savings comes in the reduction of the floor slab from 6.5" to 4.5". This reduction saves 19,000# typical bay.

Floor Depth: The depth of this system is 16.5". This reduction in depth, coupled with the open web spaces as possible paths for MEP make this system favorable.

Long Span Capabilities: These joist have the ability to span up to 100' thus giving the designers this option for all spans throughout the building.

Disadvantages

Constructability: The steel joists are connected to their

One Way Concrete Slab

The one way floor slab is the second concrete floor alternative explored in this report. Although it is shallow, it is heavy like the pan joist system previously evaluated. The beams and girders are both 22" deep. The slab is consistent with the existing slab, 6"/6.5".

Comparison of the existing framing to the alternative choices can be found in the appendices of this report.

Advantages

Floor Depth: The floor depth has been reduced to 22" from 24.2" in he existing system, and 23" in the pan joist system.

Disadvantages

See concrete pan joist system disadvantages.

Comparison

Floor Framing System	Advantages	Disadvantages	Cost (\$/ft^2)	Further Investigation
Existing: Composite Steel	Light weight system 24.2" floor depth Constructability	Cost	\$20.35	N/A
Modified Composite Steel	Light weight system Constructability	Cost 30.2" floor depth Increased labor	\$20.35	No
Concrete Pan Joists	Reusable forms 23" floor depth	Heavy weight alternative Foundation impact Lateral system impact	\$17.20	As a concrete alternative for typical bays
Composite Steel Joists	Lightest floor system 16.5" floor depth MEP routed through joists Long span capability	Shipping/availability Erection time/welding	\$17.20	Yes
One Way Concrete Slab	22" floor depth	Heavy weight alternative Foundation impact Site storage of formwork	\$18.75	No

Conclusion

After the preliminary design of the 4 alternative floor framing systems, only one appears to be well suited for further inspection. The composite open web steel joist system seems to be the most favorable system in terms of cost, weight, and floor depth. Also, the joist construction is able to handle long spans, making this system attractive for possible design of the gymnasium and ballroom areas. Of the other options, the composite steel construction seems to make the most sense in terms of weight, and constructability. It is the most expensive floor system per square foot, but makes up for itself in weight and overall capability.

Of the concrete systems, the pan joists are relatively shallow compared to all other systems, and are cheaper per square foot than the one way system. However, both concrete systems yield obvious weight issues, leading to lateral system impact as well.

Appendices

Modified Composite System

* Entire floor system was redesigned in RAM Steel. The following is a check of a beam in the new span and spacing.

ALTERNATIVE : MODIFIED G	OMPOSITE
$f_0' = 4000 \text{ psi}$ $q_n = 26.1 \text{ K}$ $f_1' = 60000 \text{ psi}$ $l_n = 21'$ Spacing = 7'	DL ° 69 SCAB 3 MTL PECK 10 MEP/CLE 20 PARETITION 102 PEP
Wu= 1.2 (102) + 1.6 (100) = 282.4 "	
$M_{u} = \frac{282.4(7')(21)^2}{8(1000)} = \frac{110^{14}}{110}$	Assume $a = 1''$ Y2 = 6.5 - $\frac{1}{2} = 6''$
TRIAL SECTIONS:	
$ \begin{array}{c} \frac{\partial M_{P}}{\partial M_{P}} & \frac{\partial M_{P}}{\partial M_{P}} \\ W & 10 \times 12 \\ W & 10 \times 13 \\ W & 10 \times 14 \\ W & 12 \times 14 \\ W & 12 \times 14 \\ W & 12 \times 14 \\ \end{array} $	$\frac{2Q_{R}}{114^{K}} + \frac{4}{10} + \frac{10}{350^{K}} + \frac{10}{350^{K}} + \frac{140^{K}}{140^{K}} + \frac{12}{12} + \frac{425^{K}}{425^{K}} + \frac{141^{K}}{156^{K}} + \frac{12}{12} + \frac{414^{K}}{456^{K}} + \frac{12}{12} + \frac{456^{K}}{456^{K}} + \frac{12}{12} + \frac{12}{456^{K}} + \frac{12}{12} + \frac{12}{456^{K}} + \frac{12}{12} $
TRY WIZH14: $b_{eff} = \frac{2i'(ne'')}{4} = 63''$	
a = 141" •.85 (4)(63") = 0.658"<1"	
$\phi M_{N} > M_{v} = 110^{\mu}$	
WIZXI4(12) .: OK FOR LOADING	

Concrete Pan Joists

ALTERNATIVE: CONCRETE PAN JOISTS JUPERIMPOSED PL = 30 PSF LIVE LOAD = 100 BF Wy = 1.4(30) + 1.7(100) = 212 PSF In = 32'0" .: USE 20" DEEP RIB + 3" TOP SLAB 30" FORMS + 6" RIB C 36" C. END SPAN INTERLOR SPAN REINFORLING: TOP -> #5 @ 10" REINFORCING: TOP -> #5 09"00 BOTTOM = (5) #6 BOTTOM-> (6) #7 NJ = 249 BF > 212 BF W0=229 PSF > 212 PSF * SEE CRSI TABLE * GIEDER: 0.6 CP/SF (150PLF) = 90PSF . ASSUME p=0.6 pinux = 0.6 (0.0200) = 0.0124 Wu= 1.2 (90+30)+1.6 (100) Mu= pMm 518(12) = 0.9 (0.0124) (60) bd2 (1-0.51 Pty = 304 PSF bd2 = 10428" 304 PSF (31') = 9.4 KLF Mu= 1.4(21')2 = 518 1K b= 17" d=26"

STAN ONE-WAY MULTIPL	idard / Jois _e Spa	rs ⁽¹⁾ NS	FACT	30 ORED	" Form USAE	IS + 6' BLE SU	' Rib @ IPERIMI	36" c. POSED	·c. ⁽²⁾) LOA[) (PSF) $\begin{cases} f_{c}^{i} \\ f_{y} \end{cases}$	= 4,0 = 60,0	00 psi 100 psi
					20" De	ep Rib +	3.0″ Top \$	Slab = 2	3.0" Tota	al Depth			
TOP BARS	Size @	# 4 10	# 4 8	# 4 7	# 5 9	#6 11	End	#4 9	# 5 11	# 5 9.5	# 5 8	#6 9	Int.
BOTTOM BARS	# #	#5 #5	#5 #6	#6 #6	#6 #7	# 7 # 7	Span Defl. Coeff	#4 #5	#5 #5	# 5 # 6	#6 #6	#6 #7	Span Defl. Coeff
Steel (psf)		.85	1.04	1.23	1.44	1.69	(3)	.93	1.18	1.38	1.66	2.01	(3)
CLEAR S	PAN		181. 30	EN	D SPAI	N				INTERI	OR SP/	AN	
30'-0' 31'-0'	1	117 0 101	167 0	218 0	278 0 253	334* 340	9.752	165 0	228 0 206	301 0 274	375 0 343	395* 458* 374*	6.001
51.0		0	0	0	0	0	11.119	0	200	0	0	426	0.042
32'-0'	1	87	131	176	229	283	12.625	130	185	249	314	355*	7.769
33'-0'	e	74 0	116 0	158 0	208 0	259 0	14.278	114 0	166 0	226 0	287 0	337* 360	8.787
34'-0'	ļ.	63 0	102 0	141 0	188 0	236 0	16.089	100 0	149 0	206 0	263 0	320* 332	9.901
35'-0"	Ē	52 0	89 0	126 0	171 0	216 0	18.067	88 0	134 0	187 0	241 0	305* 306	11.118

CRSI Handbook, 2002

Composite Steel Joists

ALTERNATIVE: COMPOSITE STEEL JOISTS VULCEAPT COMOSITE/NON-COMP. FLOOR JOISTS GIVEN ! NORMAL WT. CONC. f: = 3000 ps1 + DESIGN EXAMPLE (PG 20)# -6.5" SLAPS (4.5" CONC. , 2" DECK) SPACING = 7' DESIGN LOADS : CONCRETE ------ 69 PSF NON COMPOSITE DEAD LOAD : JOIST (ESTIMATED) > 4.5 PSF DECK ------ 3 PSF BRIDGING ----- O.1 PSF TOTAL ---- 76.6 PSF (7')= 536 PLF CONSTRUCTION LIVE LOAD : 8 PSF COMPOSITE DEAD LOAD : FIXED PARTIFIONS -> 20 PSF MEP ----- 5 PSF CEILING/FLOOR - SFSF TOTAL -> 30PSP (7) = 210PLF DESIGN LIVE LOAD -> 100 PSF COMPOSITE LIVE LOAD : REDUCTION: L= L. [0.25 + 15 (2(3144)(7))] = 100 (0.964) = 97 PSF (7') = 680PLP TOTAL LOAD -> 1426 PLF

FROM THE "WEIGHT TREEF + DESIGN AUTOF"
VC SERIES
NINC (1457cr)
314* = 32' sraw
TOTAL LOAD = 1420 PLF

$$f_{2}^{\prime} = 3000 \text{ pr.}$$

ISOO PLF (10' sracuma)
TRY 10' SPACINGE
2.5" NUNC ON 2" DECK \Rightarrow FROM TREES. [VULCEAFT DECK
YULCEAFT DECK
 $f_{2}^{\prime} = 3000 \text{ pr.}$
 $200\text{ K}_{1} = 45\text{ prp}$
JAIST = 4.5 PR
JAIST = 4.5 PR
JAIST = 4.5 PR
JAIST = 4.5 PR
DESIGN UNG = 0.1 PF
S2.2 Compr
MEP
 $= 52\text{ Compr}$
 $TOTAL LOAD = 1070 \text{ PLF}$

PREFITIONS = 200 PR
MEP
 $= 57\text{ PR}$
 30 Compr
 30 Compr
 30 Compr
 10 Compr
 10 Compr
 30 Compr
 $10\text{ Comp$

TELAL SPEE: JOINT DEPTH - 12"

$$M_{0j} = 37_{NT}$$

 $M_{0j00} = 1245_{NF}$
 $N'd_{0} = (40) \frac{3}{4} \frac{4}{9}$

DEFLECTION:
 $I_{ENT, MONICULE} = 0.0488 (M_{0}) d_{1}^{2}$
 $= 2.00 i d^{4}$
 $\Delta_{ENT, NC, M} = \frac{1.15 (s) N_{MOL, (SPAN)}^{4} 1728}{384 E_{TR} I_{ENC}}$
 $-\frac{1.15 (s) (52.2) (31)^{4} 1728}{384 E_{TR} I_{ENC}} = \frac{1.04"}{230} = \frac{1}{1230}$
 $\Delta_{COMPLOV} = \frac{N_{10}}{N_{000}} \left[\frac{1}{300}\right] = \frac{300 ne}{1243 R_{PR}} \left[\frac{31'(12")}{300}\right] = 0.705" = \frac{1}{530}$
 $\Delta_{COMPLOV} = \frac{N_{10}}{N_{000}} \left[\frac{1}{3100}\right] = \frac{350}{1245} \left[\frac{31(11)}{3100}\right] = 0.705" = \frac{1}{530}$
 $\Delta_{TT} = 1.04 + 0.25 + 0.7 = 2.00" = \frac{1}{145}$
 $\Delta_{IST} CAMBER = \Delta_{ENLER} + 50\% \Delta_{ER} + 20\% \Delta_{ENL}$
 $= 2.3" \therefore \frac{214''}{24}$
SUMMARY : -12 VL 1800 / 850 / 300
 $- (40) \frac{3}{4} \frac{1}{9} 5705$
 $- JOINT NT = \frac{2}{12} P_{15}$

Joist	Joist								Slab	Desi	ign										
Span	Depth			No	ormal	Weig	ght C	concr	ete (145	pcf)		f 'c =	3.0	ksi					
		tc (in)	2.00	2.00	2.00	2.00	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	3.00	3.00	3.00	3.00
		hr (in)	1.0	1.0	1.0	1.0	1.5	1.5	1.5	1.5	2.0	2.0	2.0	2.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0
		Js (ft)	3.5	4.0	4.0	4.5	5.0	6.0	6.5	7.0	8.0	8.5	9.0	10.0	10.0	10.0	10.0	11.0	12.0	12.0	12.0
						Total U	Iniform	nly Dist	ributed	d Joist	Load in	n Poun	ds Per	Linear	Foot						
		TL	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1800	2000	2200	2400	2700	3000
(ft)	(in)																				
32	12	Wtj (plf)	10	11	13	15	16	18	20	23	25	27	28	30	33	37	41	43	46	59	71
		W360 (plf)	271	348	389	452	580	657	724	766	890	957	1022	1021	1112	1245	1365	1712	1706	1916	2202
		N-ds	20-1/2	24-1/2	26-1/2	30-1/2	32-1/2	34-1/2	38-1/2	32-5/8	24-3/4	26-3/4	30-3/4	30-3/4	34-3/4	40-3/4	48-3/4	48-3/4	50-3/4	60-3/4	60-3/4
	14	Wtj (plf)	9	11	12	13	14	17	18	19	23	24	26	27	29	34	37	39	40	46	57
		W360 (plf)	304	374	442	506	635	753	836	916	982	1037	1107	1191	1273	1406	1560	1905	1910	2094	2384
		N-ds	20-1/2	22-1/2	26-1/2	28-1/2	28-1/2	32-1/2	34-1/2	38-1/2	20-3/4	20-3/4	24-3/4	26-3/4	28-3/4	34-3/4	40-3/4	42-3/4	44-3/4	50-3/4	60-3/4
	16	Wtj (plf)	9	10	11	13	13	15	17	19	21	23	24	26	26	29	34	36	39	46	47
		W360 (plf)	338	417	496	581	717	787	924	1029	1066	1166	1232	1334	1340	1550	1699	2053	2282	2526	2518
		N-ds	18-1/2	20-1/2	22-1/2	26-1/2	24-1/2	28-1/2	32-1/2	34-1/2	18-3/4	20-3/4	22-3/4	24-3/4	24-3/4	28-3/4	34-3/4	34-3/4	42-3/4	48-3/4	50-3/4
	18	Wtj (plf)	9	9	11	12	13	13	15	17	20	22	23	23	25	28	31	32	36	41	47
		W360 (plf)	364	438	531	611	779	854	928	1010	1124	1248	1366	1379	1452	1684	1792	2115	2340	2625	2908
		N-ds	18-1/2	20-1/2	22-1/2	24-1/2	24-1/2	26-1/2	28-1/2	30-1/2	18-3/4	18-3/4	20-3/4	20-3/4	22-3/4	26-3/4	30-3/4	32-3/4	36-3/4	42-3/4	50-3/4
	20	Wtj (plf)	8	9	10	12	12	13	14	15	20	21	22	22	23	26	28	30	34	38	43
		W360 (plf)	399	467	538	685	789	932	999	1084	1180	1282	1407	1417	1562	1796	1957	2251	2435	2701	3031
		N-ds	18-1/2	20-1/2	20-1/2	22-1/2	20-1/2	24-1/2	26-1/2	26-1/2	16-3/4	18-3/4	20-3/4	20-3/4	22-3/4	24-3/4	26-3/4	28-3/4	32-3/4	38-3/4	44-3/4
	22	Wtj (plf)	8	9	10	11	12	13	14	15	19	20	21	22	22	24	27	29	30	36	40
		W360 (plf)	395	489	570	718	880	966	1049	1138	1220	1327	1441	1579	1594	1775	2039	2304	2517	2963	3013
		N-ds	18-1/2	18-1/2	20-1/2	22-1/2	20-1/2	22-1/2	24-1/2	26-1/2	16-3/4	16-3/4	18-3/4	20-3/4	22-3/4	24-3/4	26-3/4	26-3/4	28-3/4	38-3/4	38-3/4
	24	Wtj (plf)	8	9	10	11	12	12	13	14	18	19	20	21	22	24	26	28	29	33	38
		W360 (plf)	426	513	643	693	875	1000	1079	1172	1236	1349	1466	1591	1747	1930	2091	2331	2554	2919	3241
		N-ds	18-1/2	18-1/2	20-1/2	20-1/2	20-1/2	20-1/2	24-1/2	26-1/2	16-3/4	14-3/4	16-3/4	18-3/4	20-3/4	22-3/4	24-3/4	24-3/4	26-3/4	32-3/4	38-3/4
	26	Wtj (plf)	8	9	10	11	12	12	13	14	18	18	19	20	21	23	24	27	29	32	35
		W360 (plf)	428	521	647	710	890	967	1102	1197	1240	1349	1475	1594	1736	1925	2135	2373	2731	2955	3147
		N-ds	18-1/2	18-1/2	20-1/2	20-1/2	18-1/2	20-1/2	20-1/2	24-1/2	12-3/4	16-3/4	16-3/4	16-3/4	18-3/4	22-3/4	24-3/4	24-3/4	26-3/4	28-3/4	32-3/4
	28	Wtj (plf)	8	9	9	10	12	12	13	14	18	18	19	20	21	22	24	27	29	32	34
		W360 (plf)	464	537	651	780	903	1048	1176	1280	1320	1439	1563	1599	1728	1902	2113	2533	2758	2940	3169
		N-ds	18-1/2	18-1/2	18-1/2	20-1/2	18-1/2	18-1/2	20-1/2	22-1/2	12-3/4	16-3/4	16-3/4	14-3/4	16-3/4	20-3/4	22-3/4	22-3/4	24-3/4	26-3/4	30-3/4

ALTERNATIVE: ONE WAY SLAB
LONDING: SOL + 30 MT SPACING: [0.5'
LL + 100 MT
$$J_{LL} = 32'$$

WJ = 1.4 (30) + 1.7 (100)
= 212 PSF
SLAB: 6" \rightarrow CESI HANDROOK (LL.7)
BEAMS: (251 HANDROOK (CH.12)
WSGLS 24" SGM) WSGLAF : 18(24)(150)
(ASSUME 18: 24" SGM) WSGLAF : 18(24)(150)
(ASSUME 18: 24" SGM) WSGLAF : 18(24)(150)
HUL = 100 (10.5') = 315 PLP
WLL = 100 (10.5') = 315 PLP
WJ = 1.4 (T50 + 450 + 215) + 1.7 (1080)
= 3.8 KLP
TEY
TANAUSESCE
TEY
TAXA BOTTOM TOP REINDORCHENNT
(4x22 (5) #10 (4) #10 (18) #4 @ 0.0"RC.
(4x22 (5) #10 (4) #10 (18) #4 @ 0.1"RC.
(10) *4 @ 0.1"RC.
(10) *2 @ 0.1"RC.
(10) *2 @ 0.1"RC.
(10) *2 @ 0.1"RC.
(10) *3 @ 0.1"RC.

SOLID ONE $f_c' = 3,000$	E-WAY	SLAE	BS—E	ND SF	PAN Grad	e 60 B	Recon lars	nmend	led Mi	nimum	Reinf ρ≥	orcem 0.001	ent 8 <i>bh</i>
Thickness (in.)	4	41/2	5	51/2	6	6½	7	7½	8	81⁄2	9	9½	10
Top Bars Spacing (in.)	#4 12	#4 12	#4 12	#4 12	#4 11	#4 10	#4 9						
Bottom Bars Spacing (in.)	#3 12	#3 12	#3 12	#3 11	#3 10	#3 9	#3 8	#3 7	#4 .12	#4 12	#4 12	#4 11	#4 11
Top Bars Free End Spacing (in.)	#4 12	#4 12	#4 12	#4 12	#4 12	#4 12	#4 12						
T-S Bars Spacing (in.)	#3 15	#3 13	#3 12	#3 11	#4 18	#4 17	#4 15	#4 14	#4 13	#4 13	#4 12	#5 18	#5 17
Areas of Steel (in. ² /ft) Top Interior Bottom	.200	.200	.200 .110	.200 .120	.200 .132	.200 .141	.200 .165	.200 .189	.200 .200	.200 .200	.218 .200	.240 .218	.267 .218
Slab Wt. (psf)	50	56	63	69	75	81	88	94	100	106	113	119	125
CLEAR SPAN		Long Las	1	FACT	ORED U	SABLE	SUPERI	MPOSE	D LOAD) (psf)			
6'-0" 6'-6"	376 310	443 366	509 421	636 527	789 657	926 772							
7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6"	258 215 181 152 128 108	305 255 215 181 153 129	350 294 247 209 177 150	441 372 315 268 229 195	552 467 398 340 292 251	650 552 471 404 348 301	859 733 629 543 471 410	926 798 691 602 527	911 791 691 605	980 851 743 652	910 795 697	937 824	995 875
10'-0" 10'-6" 11'-0"	90 75 62	109 92 76	126 106 89 74	167 142 121	217 187 161	261 226 196	358 313 274 240	463 382 337 297	533 415 365 322	574 447 394 348	614 534 473 419	727 642 570 508	773 685 608 542

SOLID ON $f_c' = 3,000$	E-WAY psi	SLA	BS—II	NTERI	OR SF Grad	PAN le 60 E	Bars	Re	comm	ended	Minir Top ar	num S nd Bot	teel
Thickness (in.)	4	41/2	5	5½	6	6½	7	7½	8	81⁄2	9	9½	10
Top Bars Spacing (in.)	#4 12	#4 12	#4 12	#4 12	#4 12	#4 12	#4 12	#4 12	#4 12	#4 12	#4 12	#4 11	#4 11
Bottom Bars Spacing (in.)	#3 12	#3 12	#3 12	#3 11	#3 10	#3 9	#3 8	#3 7	#4 12	#4 12	#4 12	#4 11	#4 11
T-S Bars Spacing (in.)	#3 15	#3 13	#3 12	#3 11	#4 18	#4 17	#4 15	#4 14	#4 13	#4 13	#4 12	#5 18	#5 17
Areas of Steel (in. ² /ft) Top Interior Bottom	.200 .110	.200 .110	.200 .110	.200 .120	.200 .132	.200 .147	.200 .165	.200 .189	.200 .200	.200 .200	.200 .200	.218 .218	.218 .218
Slab Wt. (psf)	50	56	63	69	75	81	88	94	100	106	113	119	125
CLEAR SPAN				FACT	ORED L	ISABLE	SUPERI	MPOSE	D LOAD) (psf)			
6′-0″ 6′-6″	579 483	680 568	781 652	969 811									
7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6"	407 345 295 253 218 189	479 407 348 299 259 224	550 468 400 344 298 258	686 585 502 434 377 328	851 727 627 543 473 414	903 780 678 592 520	990 855 743 650 571	931 810 708 622	876 766 673	942 824 725	881 775	940 826	998 878
10'-0" 10'-6"	163 142	194 169	224 195	287 251	363 319	458 362	503 397	548 434	594 470	640 507	684 542	729 578	775

STE	M		BAR	S ⁽¹⁾								Т	OTAL	CAP	ACITY	<i>U</i> = 1.	4D + 1	.7L ⁽³⁾		2173						$+\Phi M_n$ $-\Phi M_n$	DEI (C
		вот	гом	Lay-	TOP		SPAN,	$\ell_n =$	28 ft			SPAN,	$\ell_n =$	30 ft			SPAN.	$l_n =$	32 ft	0755	1010	SPAN,	$\ell_n =$	34 ft	OTCE1	(6)	(-
n.	in.	$l_n + 12$ in	0.875	ers (2)		LOAD (4) k/ft	STIR. TIES (5)	φT _n ft- kips	Al sq.	STEEL WGT Ib.	LOAD (4) k/ft	STIR. TIES (5)	φT _n ft- kips	Aℓ sq. in.	STEEL WGT Ib.	LOAD (4) k/ft	STIR. TIES (5)	фТ _n ft- kips	Al sq. in.	WGT Ib.	(4) k/ft	TIES (5)	Φ1 _n ft- kips	Al sq. in.	WGT Ib.	ft-kip	×
	10000	2# 7	<u>n</u>	1	2# 9	2.1	123G	5	-	290	1.8	123G	5		307 393	1.6	123G 273E	5 20	- 0.9	324 415	1.4	123G 283E	5 20	0.9	342 438	100 161	1
		2# 8		1	2#10	2.7	143G	5	0.9	367	2.3	143G 264E	5	0.9	389 600	2.0	143G 274E	5 20	-0.9	412 632	1.8	153G 284E	5 20	0.9	437 665	130 199	
	12	2#10		1	2#14	4.1	164G	5	- 0.9	651 777	3.6	173G 264E	5 21	0.9	636 835	3.1	173G 274E	5 20	0.9	673 883	2.8	183G 284E	5 20	0.9	715 931	199 320	
		2#11		1	2#14	4.5	164G 424B	5 21	0.9	709 1018	3.9	174G 444B	5 21	0.9	758 1079	3.4	184G 274E	5 20	0.9	807 950	3.1	193G 284E	5 20	0.9	1001	320	
		2# 8		1	3# 8	2.7	133G	7	10	354	2.3	133G	7	10	375 600	2.1	133G 274E	7	- 1.0	397 632	1.8	133G 293E	7 26	1.0	418 521	131 192	
		2# 9		1	3# 9	3.3	143G	7	1.0	441	2.9	153G 264E	7 26	1.0	472 689	2.5	153G 274E	7 26	1.0	499 727	2.3	153G 294E	7 26	1.0	527 775	163 236	
	14	2#11		1	3#11	4.8	164G	7	1.0	725	4.2	174G 265E	7 26	1.0	775 1100	3.7	174G 274E	7 26	- 1.0	817 976	3.3	183G 294E	7 26	1.0	802 1039	243 344	
		2#10	1#10	1	4#10	5.2	164G 245E	7 27	1.0	780 1078	4.5	174G 265E	7 26	1.0	835 1160	4.0	184G 275E	7 26	1.0	889 1224	3.5	184G 295E	7 26	1.0	935 1305	290 369	
22		2# 8		1	3# 8	2.7	123G	8	- 12	352	2.4	123G 234F	8	1.1	373 579	2.1	123G 244F	8 33	- 1.1	394 611	1.8	123G 254F	8 32	1.1	416 644	132 194	
		2#10		1	3#10	4.2	153G	8	- 11	550 870	3.6	153G 234F	8	1.1	584 778	3.2	163G 244F	8 32	1.1	623 824	2.8	163G 254F	8 32	1.1	657 869	205 295	
	16	2#11		1	3#11	4.9	154G	8	- 11	721	4.3	164G	8	11	771	3.8	173G 245F	8	1.1	758 1125	3.3	173G 255F	8 32	1.1	800 1185	246 351	
		2#14		1	3#14	6.6	175G	8	-	1082	5.7	175G	8	-	1143	5.0	184G	8		1133	4.5	194G	8	11	1202	337	

f_c' f_y	' = = (4,000 p 60,000 p	si si	RE	CTA INT	NG	IOR	AR E	BEAN	ИS,			1.1	b						BE	AM	T	DP BM. J BARS	T
ST	EM	BAF	RS ⁽¹⁾					2			TOTA	LCA	PACITY	U = 1	.4D +	1.71	(30	10000		-		a. nin	+\$Mn	DEFL
		BOTTOM	Lav- TOP		SPAN	$I, \ell_n =$	20 ft	t		SPAN	V. lo =	= 22 f	t	1	SPAN	10.		_	1-	SPAN	V. P. =	26 ft	-ΦM _n	(0)
"	D		ers	LOAD	STIR	φT _n	AE	STEEL	LOAD	STIR	dΤ.	40	STEEL	1040	OTIO	· · · n	= 24 f	t		onio	LAT	AA STEEL	(6)	(7)
in.	in.	$\ell_n + 0.875$ 12 in. ℓ_n	(2)	(4) k/ft	TIES (5)	ft- kips	sq. in.	WGT Ib.	(4) k/ft	TIES (5)	ft- kips	sq. in.	WGT Ib.	(4) k/ft	TIES (5)	ΦT _n ft- kips	Al sq.	STEEL WGT	LOAD (4)	TIES (5)	ft- kips	sq. WGT in, Ib.	ft-kip	× 10 ⁻⁰ in.

22				1			3058	28	1.1	996		195E	28	1.0	852	1	215E	27	10	748	6.0	225E	27	1.0	997	
22		2# 8	1	3# 8	5.3	103G	9	10	258	4.4	113G	9	-	284	3.7	1136	8	1.0	933		1136	8	-	326	1	
		2#10		1	3#10	8.1	124G	9	1.2	384 445	6.7	174F 134G	34 9	1.2	427 487	57	184F	34	1.2	305 460	3.1	204F	33	1.2	503 511	
	16	2#11		1	3#11	9.7	125G	9	1.2	- 584	8.0	175F 134G	34 9	1.2	695 578	67	185F	34	1.2	522 747	4.8	205F	33	1.2	818 678	
		2#10	1#10	1	3#14	11.8	135G	35	1.2	870 712	9.8	265C 145G	34	1.2	948 778	8.2	185F	34	1.2	628 846	5.7	205F	33	1.2	925 899	1
				i	-		2450	35	1.2	985		265C	34	1.2	1076	0.2	295C	8 34	1.2	845 1184	7.0	315C	33	1.1	1275	ļ
		2#7	1#7	1	3# 9	6.1	103G 155F	10 42	13	293	5.0	113G	10		322	4.2	113G	10		347	26	1236	10	-	376	
		2# 8	1# 8	1	3#10	7.8	114G 155F	10 42	13	411	6.5	123G	10	1.3	472 405	5.4	214E 133G	41	1.3	543	3.0	224E 133G	40	1.3	473	l
	18	2#10	1#10	1	3#14	12.0	135G 245C	10	- 10	716	9.9	175F 135G	41	1.3	675 771	8.3	185F 145G	41	1.3	726	4.0	205F 154G	40	1.3	795 833	
		2#11	1#11	1	3#14	13.2	145DdG	10	- 10	786	10.9	265C 145G	41 10	1.3	1094 846	9.2	295C	41	1.3	1204	7.1	315C 155G	40	1.3	1296 979	
_				1	ليسر	12.4	Ens sinds	42	1.3	1059		265C	41	1.3	1157		295C	41	1.3	1273	7.8	315C	40	1.3	1370	L